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APPENDIX I

RECURRENCE EXPRESSION TO EVALUATE THE

GREEN’S FUNCTION

In this Appendix, we present a recurrence formula to evaluate

~~ ( n). (M is the number of the interface with conductor strips

and n is the number of dielectric layers.)

EM(n) =EM(n)+EJ_M(n)–jjM ~(n) (Al)

with

%-l.l(n)
~(n) =~,,, (n)– .

L~_l(n)
(A2a)

~’(rr) = gN_,, N_i(n) – %-l,~-j+,(n)
~_l(n) ‘

i=2,. ... ~,~,

(A2b)

The boundary conditions at lQ~er and upper interfaces for

each mode are taken into aeeount by L~ ( n ) and L~( n ) in the

following way:

El(n) = gl,~(n) -2pk.&” {sinh(2k.H&)}’1 (A3a)

E<(n) =gN_l, N_l(n), (A3b)

P = O for odd, even-odd, and odd-odd modes, p = 1 for even,
even-even, and odd-even modes, kn is the discrete Fourier vari-

able, and the equivalent heights and perrnittivities are given by

r
C:q = E;. c; (A4aj

F
H:q = H, . c; d

Y“
(A4b)

The %. ~( n ) are defined as follows:

j,+l,l(n) =~,,l+l=-cok~c~~’
{Sinh(k.w )}’1 (A5a)

~,,,(n) ‘~okn{f:~l coth(knH::l) +c:qcoti(knH:q)}.

(A5b)

These expressions are easily evaluated in a digital computer

and we can write a subroutine program which considers as inputs

the number of dielectric layers and their thickness and permittiv-

ity, and provides as output the corresponding Green’s function in

the spectral domain (~~ ( n) = ~~ ( n )- l). Thus, the complexity

of the dielectric medium is no longer a difficulty.
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Faster Computation of Z-Matrices for Rectangular

Segments in Planar Microstrip Circuits

ABDELAZIZ BENALLA AND K. C. GUPTA

Abstract —Curreutly available forottsfation of Z-matrices for rectangular

segments in planar microstrip circuits involves numerical summation of the

doubly infinite series in the corresponding Green’s function. These compu-

tations can be accelerated considerably by using the formulation proposed

here which is based on an analytfcaf treatment of one of the summations

involved.

I. INTRODUCTION

The planar circuit approach (or two-dimensional circuit ap-

proach) has been used for characterization of microstrip compo-

nents [1]–[5] as well as microstrip ahtennas [6]–[9]. Microstrip

circuits may be treated as planar two-dimensional circuits by

using the planar waveguide model [10] for microstrip lines. Seg-

mentation [4], [11] and desegmentation methods [12] used for

two-dimensional circuit analysis involve computations of Z-

matrices for various planar segments in the circuit. Most comlmon

circuit segments have rectangular shapes and the Z-matrix for a

rectangular segment is obtained [1], [13] by using a two-dirmen-

sional impedance Green’s function, which is available as a doubly

infinite series involving various modes along the two edges of the

rectangular segment. Consequently, computations of Z-matrices

based on the currently available forms.ilas [1], [13] involve numeri-

cal summation of a doubly infinite series. Because of the slow

convergence of these series, a large number of terms (typically

100 X 100) is needed to obtain sufficiently accurate results. This
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becomes the most time consuming part of planar circuit compu-

tations and has discouraged widespread applications of the planar

circuit approach,

The present note describes a method leading to faster computa-

tion of Z-matrices for rectangular segments. The proposed method

involves the summation of a singly infinite series and conver-

gence is much faster. A comparison with the earlier method for a

typical case is presented in Section II-D.

II. COMPUTATIONAL hlJiTHOD

A. Currently Available Formulation

Calculation of Z-matrices for rectangulw segments is based on

the Green’s function for a rectangle which maybe written as [1],

[13]

G(XP,YPIX,, Y,) =% i i W.
~=on=()

cos(kxxp) cos(~xxq) cos(~.”Yp)

k:+k:–k2
cos( kY~q) . (1)

where

kX=T k,= :
a

{

1,
Um=

m=~

2, m*O

k2 = u2pcoc,(l– ji?)

8 = loss tangent of the dielectric.

The length of rectangle is a, its width is b, and height of the

substrate is d. The points ( XP, yp ) and (x~, y~ ) denote the

location for p and q ports, respectively, which for most of

the planar circuit applications are located along the edges of the

rectangle. The elements of the Z-matrix for a rectangular seg-

ment are obtained from (1) and may be expressed as

zpq=&J-’J G(%YPI%E7)ZP% (2)

W4

where d~ and dr~ are incremental distances over the port width

Wp and Wq .

(

1 for microstrip circuit
q= z’

for stripline circuits (symmetrical triplate circuits).

For ports oriented along a single direction (x or y) only, the

impedance Zp~ is given by

“%m(xq,Yq / k..) ( 2+k; -k2) (3)

where for ports oriented along the y-direction

kyw

()
fJn,,,(X, y) =cos(,JcXx) cos(k}y)sinc y (4)

and for ports oriented along the x-direction

kyw

()
@ti,n(x, y) =cos(kXx)cos( kYy)sinc ~ . (5)

The function sine(z) is defined as sin(z) /z.

Equations (3)-(5) are currently used for computation of Z-

matrices for rectangular segments.

B. Proposed Formulation

The doubly infinite series in (3) along with (4) and (5) can be

reduced to a singly infinite series by summing the inner sum. The

choice of summation over n or m will depend on the relative

location of the ports p and q, and also on the aspect ratio of the

rectangular segment being considered. Without going into these

considerations at this stage, let us call, in general, the index of

inner summation as n. The Green’s function G given by (1) may

be written (separating n = O term) as

(G(%>Ypl%, ye/) =C ~ .m+’;pk:(k”xxq)
~=o x

)+ ~ u~cos(kXx,) cos(/cTxP) S(m) (6)
~=o

where C = jcopd/ab and

cc cos(k}yp) cos(k.,yq)
S(m)=2~

k:+k:–k2 “
(7)

~=~

The summation S(m) may be carried out analytically using

trigonometric Fourier series [14] as

b2 b2 cAam(n–xl) +clzanl(m-x2)

S(m)= –~+~ (8)
m m sh ( a~m)

where

dY< +Y>) (Y. -Y<)
--q =

b
X2=’7

b

Y. = max(y,,yq) Y< =min(yptyq)

Using (8) we can rewrite Green’s function G and express it in a

symmetrical form by substituting am = f j( b/n) y~. Using 1 as

a dummy variable that could be m or n, we can write Green’s

function G in the following form

G(xp YplxqsYq) = -+oU/COS(W)COS(kU,)

Cos(y,z>)cos(y,z<)

(9)
Y1sin( YIO

where

{
F= b’

l=m

a, l=n

((Xp,xq), l=m

(%$%)= (Yp, y,), l=n

K’
mn

l=m

kU = n;

l=n
b’

and

((Y> -b>y<), l=m
(.Z>2Z<)= (x>_a, x<),

l=n”

Sign of y, is chosen such that Im ( y, ) is negative.
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C. Formulation for Elements of Z-Matrix

Depending on the location of ports p and q, we consider two

cases. When ports are located along the edges, they are char-

acterized by their location (x, y) and a width w. For ports

located inside the rectangle, we use the concept of effective feed

width [15] and characterize these ports also by a location (x, y),

an effective width (w) and consider their orientation to be

parallel to either x- or y-axis.

Case I: When both ports (p and q) are oriented along the

same direction (x or y).

When both the ports are oriented in y direction, the integra-

tions in (2) are with respect to the variable y ( d~ = dy and

drq = dy). In order to keep the z. and z. independent of the

variable of integration, the inner summation is taken over m (i.e.,

the dummy variable 1 is made equal to n) so that z > = x > – a

and Z< = x.. On the other hand, if both the ports are located

along x direction, 1 is chosen as m and the inner summation is

taken over n. These choices ensure the convergence of the series

for Zpg. For this case, ZP~ is written as

ZPq = – CF~ /~ou, cos(kUuP) cos(kuu~)

.Cos(y,z> )cos(y,z<)

.Sinc(%’)sinc(%)
Y1Sin( YF) “

(lo)

For large values of 1, the imaginmy part of the arguments of

trigonometric functions sin (y, F), cos ( ylz > ), and cos ( y,z < ) can

become very large and give rise to numericaf problems. In this

situation, the trigonometric functions are replaced by their large

argument approximations as

1
cos(y,z> ) = —e–JYi”

2

1
cos(y[z< ) = —e+Jyl°

2

1
sin( y,F) = -e+JytF.

2J
(11)

The sign of y, is chosen such that Im ( y,) is negative. The series

for ZP~ may now be written as

ZP~ = – CF~ ~~ou, cos(kUuP)cos(kUu~)

.Cos(y,z> )cos(y,z<)

.Sinc(asinc(w_,cF?
-y,sin( y,F) n

kUwP

()
. ~ cos(kUu,) cos(kUuP)sinc y

l=L+l

k.wg exp(– jy[(o> – U<))

()
. sine –—

,2
(12)

Y/

where

{

(Y> IY<) [=m

‘v>’’-’<)= (x>, X<) /=n’

The choice of L becomes a trade-off between fast computation

and accuracy. In the numerical example discussed in Section

II-D, the algorithm selects L such that the imaginary part of

( lt~) is less than or equal to 500.
Case 11; When the two ports (p and q) are oriented in

different directions (x and y).

For this case, ZP~ given by (2) maybe written as

ZPq = – CF~ ,~ou, cos(kUuP) cos(kUu,)

.Cos(y,z< )cos(y,z>)

“sinc(%)shc(Y)/(y’13)
If 1 = n, w, corresponds to the port oriented along y-direction

and w, corresponds to the port along x-direction. On the other

hand If 1= m, w, is for port along x-direction and WJfor the port

along y-direction. Using large argument approximation for trigo-

nometric function; ZP ~ may be written as

lL

ZPq=– CF-&u,cos( kUuP)cos(kUug )cos(y,z<)

‘inc(k+)sinc(?’)
.Cos(y[z> )

YISin( Y#’)

–+), ;+lcos(kuup)cos(kuuq)

kuwl ‘Xp

()

((
–jyl v>–v<–~

)).
. sine —

2
(14)

Y? WJ

Choice of 1 is made by noting that for convergence of the last

summation in the above equation, we need

(v>-v<-y/2)>o. (15)

We choose the index of the inner summation so that this condi-

tion is satisfied. This condition maybe written more explicitly as

[=m, if{mm(yP, y~)–fin(yP2yq )-7/2} >0 (16)

and

l=n, if{max(xp, x,)-min(x,, x,)- ~/2} s 0. (17)

When both of these conditions are satisfied, any choice of 1 will

ensure convergence.

D. Comparison of Two Approaches

A sample comparison of the proposed approach with the

existing formulation is illustrated by considering a rectangular

segment shown in the inset of Fig. 1. Dimensions chosen are

3X/8 X 3A/8 at a frequency of 3 GHz and the substrate is 1/32

inch thick with c, = 2.53. A nominaf loss tangent of 0.001 has

been considered. The input impedance of the rectangular segment

at the location shown (.x= O, y = A/8) has been computed both

by the existing formula and by the derivation proposed in this

paper and the results are presented in Fig. 1. The two plots show

percentage error inl Zin I versus CPU seconds on a Control Data

Corporation Cyber 170/720 computer system. The dramatic in-

crease in the computational efficiency offered by the proposed

formulation is seen in Fig. 1. The data for these two curves was

collected by printing out the CPU time elapsed as a function of

number of terms in the summation(s) involved in the computa-



736 IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-34, NO. 6, JUNE 1986

280

260

24.0

22,0

200

180
$

z I 6,0

; I 4,0

0
K I 2,0
lx

u 100

8,0

60

40

20

r-l

L! (3)

k
1
I (5) * 3X/81
1
I
I

J1

AVAILABLE ~ TI METHOD 3.X/8

I
A/8

1 J

I
I f=3. GHz

I G,= 2.53

I h=l/321n

1(4) (lo) w= 0.376 cm

:\~:WCOoS: D

‘\(5)

I r52 16’ I 10’ I 02

COMPUTATION TIME ( CPU SECONDS)

Flg 1 Comparison of two methods for computation of Z-matrix of rectan-

gular planar segments.

tion of input impedance Zin. The number of terms summed up

are indicated on two curves. It may be noted that, if the al-

gorithm proposed in this paper is used, the number of terms

needed for 1 percent accuracy is 10, while for 0.1 percent accu-

racy the number of terms needed is 35.

III. CONCLUSIONS

A method for faster computations of Z-matrices for rectangu-

lar segments in planar microstnp circuits has been presented. As

seen by the sample comparison presented, the proposed method

yields a dramatic increase in computational efficiency.
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On Gain-Bandwidth Product for Distributed

Amplifiers

R. C. BECKER AND J. B. BEYER, SENIOR MEMBER, IEEE

Abstract — Contours of constant gain-bandwidth product as a function of

the gate and drain attenuation factors are presented. Design tradeoffs are
established. It is shown that only one design achieves maximum gain-band-

width, although many possible choices approach thk maximum. The curves

also lead to the specification of active device parameters when circuit

requirements are known.

I. INTRODUCTION

In a previous paper by Beyer et al. [1], a graphical design

technique was presented which included a curve showing maxi-

mum gain-bandwidth product. It will be shown in this paper that

the previously presented curve is actually a portion of a more

general series of contours of varying gain-bandwidth product. We

also show that for the choice of a particular MESFET, there

exists only one design for a distributed amplifier that offers

maximum gain-bandwidth, however a large number of designs

may closely approach this maximum.

In designing microwave-distributed amplifiers, it is usually

desirable to attempt to achieve the maximum gain-bandwidth

product allowed by the choice of a particular transistor. Because

of the nonlinear relationship in a distributed amplifier between

gain and bandwidth, their product is influenced by circuit param-

eters in a complex manner. In this paper, we present a set of

curves that augment the graphical techniques presented in [1] and

show design tradeoffs clearly.

II. GAIN-BANDWIDTH CONTOURS

Expressing 18 of [1] in terms of – 3-dB bandwidth yields

~of- 3 dB = 4KX- 3dB.fm.~ (1)

where

A = dc gain

~. ~~B = half-power frequency

K=@e-b

X–s dB = f. 3& /fC bandwidth normalized to the

line cutoff frequency

f~= = MESFET maximum frequency of oscillation.
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