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APPENDIX |
RECURRENCE EXPRESSION TO EVALUATE THE
GREEN’S FUNCTION

In this Appendix, we present a recurrence formula to evaluate
L,/(n). (M is the number of the interface with conductor strips
and n is the number of dielectric layers.)

Ly (n) = Ty (n) + L5_ s (1) = Brs 1o () (A1)

wi;h
Ei(n) =g, - 52200 (a22)
Z‘z/,(n)'__gN—t.N—*i(n)—‘gN—_Z‘:,Z:—(;l)(l)—a i=2,---,N-1
(A2b)

The boundary conditions at lawer and upper interfaces for
each mode are taken into account by Lj(n) and L7 (n) in the
following way:

Li(n) = &.1(n) - 2pk ey {sinh(2k,HY)} ' (A3)

z'1'(’1) =§N—1,N—1(”)a (A3b)

p =0 for odd, even-odd, and odd-odd modes, p=1 for even,
even-even, and odd-even modes, &, is the discrete Fourier vari-
able, and the equivalent heights and permittivities are given by

ta=yere, (Ada)
=H, /€. /€, (A4b)

The g, ,(n) are defined as follows:
Bror(n) =B =~ e ke {sinh(k, H)} T (ASa)

NRE coth ( k, H 1) + €, coth(ane’q)} .
(A5b)
These expressions are easily evaluated in a digital computer
and we can write a subroutine program which considers as inputs
the number of dielectric layers and their thickness and permittiv-
ity, and provides as output the corresponding Green’s function in
the spectral domain (G, (n) = L,,(n)""). Thus, the complexity
of the dielectric medium is no longer a difficulty.

g.(n)=
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Faster Computation of Z-Matrices for Rectangular
Segments in Planar Microstrip Circuits

ABDELAZIZ BENALLA anD K. C. GUPTA

Abstract —Currently available formulation of Z-matrices for rectangular
segments in planar microstrip circuits involves numerical summation of the
doubly infinite series in the corresponding Green’s function. These compu-
tations can be accelerated considerably by using the formulation proposed
here which is based on an analytical treatment of one of the summations
involved.

I. INTRODUCTION

The planar circuit approach (or two-dimensional circuit ap-
proach) has been used for characterization of microstrip compo-
nents [1]-[5] as well as microstrip antennas [6]-[9]. Microstrip
circuits may be treated as planar two-dimensional circuits by
using the planar waveguide model [10] for microstrip lines. Seg-
mentation [4], [11] and desegmentation methods [12] used for
two-dimensional circuit analysis involve computations of Z-
matrices for various planar segments in the circuit. Most common
circuit segments have rectangular shapes and the Z-matrix for a
rectangular segment is obtained [1], [13] by using a two-dimen-
sional impedance Green’s function, which is available as a doubly
infinite series involving various modes along the two edges of the
rectangular segment. Consequently, computations of Z-matrices
based on the currently available formulas {1], [13] involve numeri-
cal summation of a doubly infinite series. Because of the slow
convergence of these series, a large number of terms (typically
100x100) is needed to obtain sufficiently accurate results. This

Manuscript received August 19, 1985; revised January 3, 1986. This work
was supported in part by the Office of Naval Research under Contract
NO00014-84-K-0349.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Colorado, Boulder, CO 80309.

IEEE Log Number 8607979.

0018-9480,/86 /0600-0733$01.00 ©1986 IEEE



734

becomes the most time consuming part of planar circuit compu-
tations and has discouraged widespread applications of the planar
circuit approach.

The present note describes a method leading to faster computa-
tion of Z-matrices for rectangular segments. The proposed method
involves the summation of a singly infinite series and conver-
gence is much faster. A comparison with the earlier method for a
typical case is presented in Section II-D.

II. COMPUTATIONAL METHOD

A. Currently Available Formulation

Calculation of Z-matrices for rectangular segments is based on
the Green’s function for a rectangle which may be written as [1],
(13]

}wy,d ol
G(xys 3plxgs 7y) = Y Yo,
m=0n=0
cos(kxx )cos(k,x,)cos(k,y,)
e el @
where
o T nw
x a vy b
_ /1, m=0
0’"_{2, m#*0

k? = o?pege, (1— j8)
8 = loss tangent of the dielectric.

The length of rectangle is a, its width is b, and height of the
substrate is d. The points (x,,y,) and (x,y,) denote the
location for p and g ports, respectively, which for most of
the planar circuit applications are located along the edges of the
rectangle. The elements of the Z-matrix for a rectangular seg-
ment are obtained from (1) and may be expressed as

/fG(xp,yplx yq) dr, dr,

Z 2
b @

where dr, and dr, are incremental distances over the port width
w, and w,.

= 1,
=i,

For ports oriented along a single direction (x or y) only, the

for microstrip circuit
for stripline circuits (symmetrical triplate circuits).

impedance Z,, is given by
pr.d ad
pq nab mZO n; m ¢mn(xp’yp)

Gun(x, ) /(K2 + K2 =K} (3)

where for ports oriented along the y-direction

(5,2 = cos(k)cos k) sine 27) (9

and for ports oriented along the x-direction

k. w
Gpn (%, ) = cos(k,x)cos(k,y) sinc(“T). (5)
The function sinc(z) is defined as sin(z)/z.
Equations (3)-(5) are currently used for computation of Z-
matrices for rectangular segments.
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B. Proposed Formulation

The doubly infinite series in (3) along with (4) and (5) can be
reduced to a singly infinite series by summing the inner sum. The
choice of summation over n or m will depend on the relative
location of the ports p and ¢, and also on the aspect ratio of the
rectangular segment being considered. Without going into these
considerations at this stage, let us call, in general, the index of
inner summation as #. The Green’s function G given by (1) may
be written (separating n = 0 term) as

®  cos(k,x,)cos(k,x,)
G(Xp,yp|xq’)’q)=c{ Zoom k‘;_kZ :

2]
+ Y q, cos(kx

m=0
where C= jopd/ab and
ad cos(k,y)cos(kyy)
S(m)=2Y% =7 e (7
K24k k2

n=1

x,)cos(k,x,) S(m)} (6)

The summation S(m) may be carried out analytically using
trigonometric Fourier series [14] as

b? b cha, (7 —x)+ cha,(7—x,)
S =— + 8
(m) 722 27, sh(a,m) ()
where
b
=+—/ki-k
T
x='”(y<+y>) x =7T(y>—y<)
1 b 2 b

y> =max(y,,y,) y< =min(y,,y,).

Using (8) we can rewrite Green’s function G and express it in a
symmetrical form by substituting a,, = + j(b/7)7y,,. Using / as
a dummy variable that could be m or n, we can write Green’s
function G in the following form

u,)cos(k,u,)

cos(nz. ) os(.)

o0
G(x,.y,|x,,y,) =—CF Y g,cos(k,
70

- 9
y; sin{y, F) ©)
where
F={b’ I=m
a, I
( ) (x,,%,), I=m
U, u,) =
P (y,.%,) I=n
'Y/=i kz‘“ki
T
-, l=m
a
ki={ nax
-—l—)—, I=n
and

"br </ =
(o 2.) = (y. =b,5) I=m
(x> _a’x<)a

Sign of v, is chosen such that Im(y,) is negative.

I=n"
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C. Formulation for Elements of Z-Matrix

Depending on the location of ports p and ¢, we consider two
cases. When ports are located along the edges, they are char-
acterized by their location (x,y) and a width w. For ports
located inside the rectangle, we use the concept of effective feed
width [15] and characterize these ports also by a location (x, y),
an effective width (w) and consider their orientation to be
parallel to either x- or y-axis.

Case I: When both ports (p and g) are oriented along the
same direction (x or y).

When both the ports are oriented in y direction, the integra-
tions in (2) are with respect to the variable y (dr,=dy and
dr,=dy). In order to keep the z. and z_. independent of the
variable of integration, the inner summation is taken over m (i.e.,
the dummy variable / is made equal to n) so that z, =x, —a
and z_ = x_. On the other hand, if both the ports are located
along x direction, / is chosen as m and the inner summation is
taken over n. These choices ensure the convergence of the series
for Z, . For this case, Z, o is written as

1 o0
Zpg=— CF; ,Zoo’ cos(ku“p) cos(kuuq)
-cos( vz, )eos(yz.)

kw k.w
sinc(Tp) sinc( 7 q)

(10)

y;sin{y, F)

For large values of /, the imaginary part of the arguments of
trigonometric functions sin(y,F), cos(y,z. ), and cos(y;z. ) can
become very large and give rise to numerical problems. In this
situation, the trigonometric functions are replaced by their large
argument approximations as

1
cos(yz, ) = €7

1 =
COS(YIZ<) = -2—e+171~<

(1)

The sign of v, is chosen such that Im(y,) is negative. The series
for Z,, may now be written as

1
sin( y,F) = 2—je+”/F.

1 L
z,,= —-CF; E a,cos(kuuP)COS(ku”q)
=0

~cos(y,z5 ) cos (7<)

kw, kw,
sinc ? | sinc ¢
2 2 1
. - — jCF—
Y sin(y,F) 1
& k.w,
Y cos(kuuq)cos(kuup)sinc( 21’)
I=L+1
kw \exp(— jy(v. —v
‘Sinc( ‘7) p( JY/( <)) (12)
\ Y
where
(y> <) I=m
S It S

The choice of L becomes a trade-off between fast computation

735

and accuracy. In the numerical example discussed in Section
II-D, the algorithm selects L such that the imaginary part of
(v, F) is less than or equal to 500.

Case II: When the two ports (p and g) are oriented in
different directions (x and y).

For this case, Z, given by (2) may be written as

1 =]
Z,,= —CF; Y a,cos(kuup)cos(kuuq)
=0
-cos(y2< ) cos(42.. )

. kuwt . Yle .
. smc(——z——) smc(T) (ysinyF). (13)

If /=n, w, corresponds to the port oriented along y-direction
and w, corresponds to the port along x-direction. On the other
hand if /=m, w, is for port along x-direction and w, for the port
along y-direction. Using large argument approximation for trigo-
nometric function; Z,, may be written as

1 L
Z,,=- CF; IZ o, cos( k,u,)cos( k,u,)cos(yz<)

=0
AN w
sinc( k“?) smc( L)

0052, ) e
y sin(y, F)

1 0
—CF- ), cos(k,u,)cos(k,u,)

Mi—L+1

. %
- kw, exP(‘]Y/(U> — U< “E))
-sinc| —— > . (14)
2 W

Choice of / is made by noting that for convergence of the last
summation in the above equation, we need

(v, —v.—w/2)>0. (15)

We choose the index of the inner summation so that this condi-
tion is satisfied. This condition may be written more explicitly as

I=m, if{max(y,,y,)-min(y,,y,)-w/2}>0 (16)

and

I=n, if{max(x,,x,)—min(x,,x,)—w/2} >0. (17)
When both of these conditions are satisfied, any choice of / will
ensure convergence.

D. Comparison of Two Approaches

A sample comparison of the proposed approach with the
existing formulation is illustrated by considering a rectangular
segment shown in the inset of Fig. 1. Dimensions chosen are
3N\ /8X3A /8 at a frequency of 3 GHz and the substrate is 1/32
inch thick with €, =2.53. A nominal loss tangent of 0.001 has
been considered. The input impedance of the rectangular segment
at the location shown (x =0, y = A /8) has been computed both
by the existing formula and by the derivation proposed in this
paper and the results are presented in Fig, 1. The two plots show
percentage error in|Z; | versus CPU seconds on a Control Data
Corporation Cyber 170/720 computer system. The dramatic in-
crease in the computational efficiency offered by the proposed
formulation is seen in Fig. 1. The data for these two curves was
collected by printing out the CPU time elapsed as a function of
number of terms in the summation(s) involved in the computa-
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Fig 1 Comparison of two methods for computation of Z-matrix of rectan-

gular planar segments.

tion of input impedance Z;,. The number of terms summed up
are indicated on two curves. It may be noted that, if the al-
gorithm proposed in this paper is used, the number of terms
needed for 1 percent accuracy is 10, while for 0.1 percent accu-
racy the number of terms needed is 35.

IIL.

A method for faster computations of Z-matrices for rectangu-
lar segments in planar microstrip circuits has been presented. As
seen by the sample comparison presented, the proposed method
yields a dramatic increase in computational efficiency.

CONCLUSIONS
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On Gain-Bandwidth Product for Distributed
Amplifiers

R. C. BECKER AND J. B. BEYER, SENIOR MEMBER, IEEE

Abstract — Contours of constant gain-bandwidth product as a function of
the gate and drain attenuation factors are presented. Design tradeoffs are
established. It is shown that only one design achieves maximum gain-band-
width, although many possible choices approach this maximum. The curves
also lead to the specification of active device parameters when circuit
requirements are known.

I. INTRODUCTION

In a previous paper by Beyer er al. [1], a graphical design
technique was presented which included a curve showing maxi-
mum gain-bandwidth product. It will be shown in this paper that
the previously presented curve is actually a portion of a more
general series of contours of varying gain-bandwidth product. We
also show that for the choice of a particular MESFET, there
exists only one design for a distributed amplifier that offers
maximum gain-bandwidth, however a large number of designs
may closely approach this maximum.

In designing microwave-distributed amplifiers, it is usuvally
desirable to attempt to achieve the maximum gain-bandwidth
product allowed by the choice of a particular transistor. Because
of the nonlinear relationship in a distributed amplifier between
gain and bandwidth, their product is influenced by circuit param-
eters in a complex manner. In this paper, we present a set of
curves that augment the graphical techniques presented in [1] and
show design tradeoffs clearly.

II. GAIN-BANDWIDTH CONTOURS
Expressing 18 of [1] in terms of — 3-dB bandwidth yields

Aof_3a8 = 4KX_34pfmax (1)

where
A = dc gain
f—14p = half-power frequency
K=Vabe ®
X_3ap = f_34p/f. bandwidth normalized to the
line cutoff frequency

Jmax = MESFET maximum frequency of oscillation.
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